[image: image1.jpg]COMPUTER
NETWORKS

[image: image2.jpg]AN
{
4

FI SEVIER

[image: image3.jpg]

[image: image4.jpg]

Computer Networks 39 (2002) 457–468

www.elsevier.com/locate/comnet

A simulation study of the OSPF-OMP routing algorithm

G. Michael Schneidera,*, Tamas Nemethb
a
Department of Mathematics and Computer Science, Macalester College, St. Paul, MN 55105, USA

b
Deloitte Consulting, Minneapolis, MN 55402, USA

Received 20 September 2001; received in revised form 11 November 2001; accepted 6 February 2002

Responsible Editor: I. Nikolaidis

Abstract

Open shortest path ﬁrst (OSPF) is the most widely used internal gateway routing protocol on the Internet. However,

one shortcoming is that it does not take advantage of the existence of multiple equal-cost paths between source and

destination nodes. A well-known variation of OSPF, OSPF-ECMP (ECMP, equal-cost multipath), does exploit the

presence of multiple equal-cost paths, but only on a static basis. A variation of OSPF, OSPF-OMP (OMP, optimized

multipath), attempts to dynamically determine the optimal allocation of traﬃc among multiple equal-cost paths based

on the exchange of special traﬃc-load control messages. This paper brieﬂy describes the OSPF-OMP algorithm and the

design of a discrete event simulator that models its behavior. We then use this simulator to carry out three experiments

that compare the performance of OSPF, OSPF-ECMP, and OSPF-OMP under a range of traﬃc loads and distribu-

tions. Our results show that OSPF-OMP produces improvements in both delivery time and the number of lost messages

when compared with the other two protocols.
2002 Published by Elsevier Science B.V.

1. Introduction

Open shortest path ﬁrst (OSPF) is a link-state

routing protocol developed by the Internet Engi-

neering Task Force (IETF), and it is the internal

gateway protocol currently recommended by the

Internet Advisory Board [1,2]. Like any link-state

protocol, it may identify a number of distinct

equal-cost paths between source/destination pairs.

However, unless the protocol has been explicitly

conﬁgured to take advantage of these multiple

* Corresponding author. Tel.: +1-651-6966-458; fax: +1-651-

6966-518.

E-mail addresses:
schneider@macalester.edu (G.M. Schne-

ider), tnemeth@dc.com (T. Nemeth).

paths, it arbitrarily chooses one route and uses it in

all forwarding operations.

One of the earliest attempts at exploiting equal-

cost routes was the OSPF variant called OSPF-

ECMP, an acronym for equal-cost multipath [3].

ECMP divides the total volume of traﬃc across all

equal-cost paths using ﬁxed, unchanging measures

such as line speed or hop count. Referring to the

sample four-node network in Fig. 1, if our distance

metric is hop count, then there are two equal-cost

paths from A to D––ABD with cost 2 and ACD,

also with cost 2. OSPF would arbitrarily choose

one of these two paths and use it for all traﬃc

arriving at A destined for D. On the other hand,

ECMP would split traﬃc equally between these

two routes. This splitting process could be done

using
round-robin forwarding, in which messages

1389-1286/02/$ - see front matter
2002 Published by Elsevier Science B.V.

PII: S 1 3 8 9 - 1 2 8 6 (0 2) 0 0 2 3 1 - 1

458

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

longer queues along that route. This will eventu-

ally cause ACD to become the better route, which

will cause longer delays and queues along it,

causing us to switch back again to ABD, etc.

Dynamic algorithms are extremely sensitive to the

‘‘granularity’’ of change. That is, if the protocol

discovers a better route but switches too much

Fig. 1. Sample four-node network.

1; 3; 5; . . . go one way, while 2; 4; 6; . . . go the other,

or via hashing in which the source and destination

host identiﬁers are hashed to produce a numerical

value that determines the speciﬁc route taken.

However, since ECMP does not dynamically

adjust its division of traﬃc based on a knowledge

of current loads, its allocation may be sub-opti-

mal. For example, referring again to Fig. 1, as-

sume that all links have capacity 1, the traﬃc

volume from A to D is 1.2 units, from B to D, 0.5

units, and from C to D, 0.2 units. Using OSPF, all

A to D traﬃc travels via a single route. If that

chosen route is ABD, then the BD link is utilized

170% (1:2 ю 0:5 units of traﬃc, with a link capacity

of 1 unit) while the CD link is utilized only 20%. If

OSPF instead chooses the ACD path, then the BD

and CD links will be used 50% and 140% respec-

tively. In both cases links are overloaded, and the

system is unstable. With OSPF-ECMP, traﬃc

from A to D is divided evenly between the two

equal-cost routes. This produces utilizations along

the BD and CD lines of 110% and 80% respec-

tively––more closely balanced, but still unstable.

An optimal split, based on given loads, would al-

locate 35% of the A to D traﬃc to path ABD and

65% to ACD, resulting in a utilization of 85% on

both BD and CD––a stable system. Unfortunately,

since ECMP does not dynamically examine load-

ing values, it is unable to determine this optimal

split.

There have been previous attempts to create

adaptive routing algorithms that respond to

changing traﬃc loads and patterns. Unfortunately,

they have generally met with limited success due to

oscillation and protocol overhead [4]. Referring

once more to Fig. 1, if ABD were the optimal

route from A to D, then a dynamic protocol would

shift most traﬃc to it, causing increased delays and

traﬃc too quickly, that route becomes overloaded

and sub-optimal, quickly leading to oscillation

and instability. On the other hand, if too little

traﬃc is switched, then we are not exploiting the

adaptive nature of the protocol and will not gain

much when compared to traditional static algo-

rithms.

A second major problem with dynamic routing

methods is overhead. If we update too often then

nodes will always have current loading informa-

tion but at the cost of excessive network overhead.

If updates are infrequent, then the loading infor-

mation is out-of-date, and decisions about how to

distribute traﬃc may be quite poor.

OSPF-OMP, an acronym for ‘‘optimized mul-

tipath’’ is the most recent attempt to create a load-

sensitive routing algorithm. It was proposed by

Curtis Villamizar of UUNET Corp. in October,

1997 and initially presented to the IETF in March

1998 [5]. Modiﬁcations to the original proposal

were made in both 1998 and 1999, and the most

recent IETF draft is entitled
draft-ietf-ospf-omp-

03, dated August 18, 1999, and available on the

Web at http://www.brookﬁeld.ans.net/ospf-omp/.

For additional information about any aspect of

OSPF-OMP, check the OMP home page at http://

www.brookﬁeld.ans.net/omp/.

This paper gives an overview of the OSPF-

OMP protocol and then describes a discrete event

simulation model created by the authors to ana-

lyze the performance of the entire OSPF family of

routing algorithms. It then presents the results of

experiments conducted with this model to study

the performance of OSPF, OSPF-ECMP, and

OSPF-OMP under both normal and highly stres-

sed traﬃc loads. Our observations are compared

with the results of earlier simulation experiments

on OSPF conducted by the IETF. Our results

demonstrate the important performance improve-

ments that can potentially be achieved using the

OSPF-OMP adaptive routing protocol.

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

459

2. The OSPF-OMP routing algorithm

OSPF-OMP belongs to the general category of

routing methods called
link-state routing algo-

rithms in which every node has a complete copy of

the network map that is updated on a regular

basis. Using this map each node executes a short-

est-path ﬁrst algorithm to determine the optimal

routes. (For more information about the family of

link-state routing methods, refer to [6,10].)

The three fundamental stages of the OSPF-

OMP adaptive routing protocol are

•
ﬂooding of loading information,

•
load adjustment,

•
message forwarding.

We individually discuss each of these operations

in the following three sections.

2.1. Flooding of loading information

Every network router samples its own SNMP

counters at 15 s intervals and collects the following

statistics about each link: (1) the fraction of link

capacity used, called the
observed load, (2) the

number of incoming and outgoing packets drop-

ped, and (3) the line speed in kilobytes/s. The ob-

served load values are converted to a quantity

called equivalent load, which is an estimate of what

the loading would be if packets were not lost due

to memory constraints and TCP window size re-

strictions. On lightly used lines the observed load

and equivalent load will be virtually identical since

packets are rarely lost. On heavily loaded lines,

however, the equivalent load may be over 100%

indicating that the total traﬃc exceeded a line’s

capacity. Thus, a link with an observed load of

0.98 (98%) may have an equivalent load of 1.20

(120%) when lost packets are factored in. The

equivalent load computation is an attempt by

OMP designers to obtain a more accurate metric

of which links are most heavily used and should

have some traﬃc oﬄoaded onto other lines. (The

exact rules for the computation of equivalent load

are given in [7, pp. 6–7].)

Next, each node determines whether or not to

ﬂood the loading information just collected to all

other nodes. As mentioned earlier, this is an

important decision as too frequent ﬂooding adds

signiﬁcantly to overhead while infrequent ﬂood-

ing leaves nodes with out-of-date information.

This decision is based on three criteria: (1)

elapsed time since the last ﬂooding message, (2)

the current values of equivalent load on all lines,

and (3) the change in equivalent loading values

since the last ﬂooding message. Flooding can

occur as often as every 30 s if a line is heavily

loaded, and its load is changing rapidly. It can be

as infrequent as every 20 min if a line is lightly

loaded. The algorithm for determining whether or

not to ﬂood link-loading information is speciﬁed

in [7, pp. 18–20]. If a node decides to send a

ﬂooding message, then the equivalent load data

for all physically connected links is packed into a

special LSA_OMP_LINK_LOAD routing control

message and transmitted to every other router in

the area [8].

2.2. Load adjustment

Each node that does routing maintains a
next-

hop structure. This is a list of all equal-cost paths

from itself to every possible destination. In addi-

tion, each node identiﬁes the critical segment––the

one link in the network with the highest equivalent

load––and determines whether or not each path in

the next-hop structure does or does not include the

critical segment. Finally, each node determines the

highest equivalent load value along any single link

of each path and calls this the equivalent path load

for that path.

In Fig. 2, the same four-node network used

in Fig. 1, assume that node A has received the

equivalent load values shown in italics. These

values were obtained from nodes B, C, and D via

Fig. 2. Sample four-node network with equivalent loads.

460

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

cal segment. Finally, a LSA_OMP_LINK_LOAD

message containing information about BD will

trigger a traﬃc adjustment due to criterion 1, since

BD is the current critical segment.

Fig. 3. Next-hop data structure for node A of Fig. 2.

the ﬂooding technique described in the previous

section.

Node A builds a next-hop structure containing

all equal-cost shortest paths for reaching node D

which, in this case, are ABD and ACD. The next-

hop table for A to D routing might look something

like the structure shown in Fig. 3.

The values
P1and
P2in Fig. 3 are the proba-

bility that a message at A destined for D would use

this speciﬁc path. If we were using OSPF-ECMP

both of these values would be initialized to 0.50

and would never change.

When a new LSA_OMP_LINK_LOAD rout-

ing control message arrives, it will trigger a load

adjustment, i.e., a change to the probability values

Pi, if (1) the message describes the equivalent load

on the current critical segment––i.e., link BD in

Fig. 2, (2) the message describes the traﬃc on a

link whose equivalent load value will now make it

the new critical segment, or (3) the diﬀerence in

equivalent path load between the most heavily

used path and the most lightly used path changes

signiﬁcantly.

For example, assume a LSA_OMP_LINK_

LOAD message arrives at A from C saying that

the load on link CD is 0.50. Nothing has changed

so no traﬃc adjustments are made. Similarly, if the

message reported that the load on CD had drop-

ped to 0.40, no adjustments are made because the

equivalent path load on path ACD is still 0.50.

(The most heavily used link on this path is now

AC, which has an equivalent load of 0.50.)

However, assume that the LSA_OMP_LINK_

LOAD message reports the equivalent load on CD

has increased to 0.60. Now the equivalent path

load on ACD is 0.60, and criterion 3 above has

been met. The diﬀerence between the most and

least heavily used paths has changed from 0.35

(0.85–0.50) to 0.25 (0.85–0.60).

If the equivalent load on CD has grown to 0.90,

that will also trigger a traﬃc adjustment due to

criterion 2 above, since link CD becomes the criti-

When a node adjusts its forwarding probabili-

ties it decreases the probability value of all paths

that include the critical segment and increases the

probability value of all paths that do not contain

the critical segment. The size of the adjustment

varies; initially it is set to 1% but increases expo-

nentially each time an adjustment is made in the

same direction. This is done to help speed up the

move toward equilibrium. However, whenever

the direction of the increment is reversed, (i.e., the

critical segment changes) the adjustment size is cut

in half to reduce the likelihood that the algorithm

will develop oscillations. While the stability of this

algorithm has not been formally proven, initial

IETF simulation studies strongly indicate a trend

toward stable behavior [9,11].

A complete description of the OSPF-OMP

traﬃc adjustment algorithm is contained in [7, pp.

11–12].

2.3. Message forwarding

Fig. 3 appears to imply that the information

needed to divide traﬃc between equal-cost routes

is represented as probabilities. While these values

are probabilities, they are not actually stored in

the ‘‘traditional’’ way––i.e., values in the range

[0.0,1.0]. Instead, they are stored as
hashing

boundaries.

Nodes make routing decisions by hashing on

source and destination IP addresses located in the

packet header and using the result to determine

how to forward the message. The OSPF-OMP

hashing function produces a 16-bit unsigned value

in the range [0,65535]. By dividing this range in a

manner that reﬂects the probability of selecting

each route, the output of the hash function can be

directly related to the identity of the node where

the message should be forwarded. In addition, the

use of a 16-bit hash value allows for very ﬁne ad-

justments to the traﬃc distribution.

For example, if two equal-cost routes, R1 and

R2, were to be used equally, then we would simply

set the hashing boundary to 65; 536
2 ј 32; 768.

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

461

For a given (src, dst) pair within message M, if

Hрsrc; dstЮ < 32; 768 then message M will take

route R1, otherwise it will go via R2.

All paths in the next-hop table that have the

same next node are folded together into a single

the critical segment BD, and increase traﬃc along

the segments that do not include the segment BD.

This might produce something like the following

set of modiﬁed probabilities:

entry in the routing table and assigned a single

hashing boundary value. It is these hashing bound-

Path

A ! B ! D

Probability

0.295

aries, not probabilities, that are used in making

forwarding decisions. For example, assume the

four-node network shown in Fig. 1 but with a

A ! B ! C ! D
0.051 (probability of

sending to B ј 0:346,

previously 0.35)

bi-directional link between nodes B and C. Now,

A ! C ! D

0.506

there are four paths from A to D and assume that

the probability of using each of those routes is as

follows:

Path
Probability

A ! B ! D
0.3

A ! B ! C ! D
0.05

A ! C ! D
0.5

A ! C ! B ! D
0.15

A ! C ! B ! D
0.148 (probability of

forwarding to

C ј 0:654, previously

0.65)

To reﬂect these new probabilities, we only need

to adjust the hashing boundaries that are stored in

the routing table:

Since the ﬁrst two paths both forward messages to

node D via node B, we can fold these two paths

together in the routing table and say that there is a

35% chance of forwarding a message to node B. (It

is B that will ultimately decide whether to choose

Destina-

tion

D

Next

node

B

C

Hashing boundary

22,675(ј 0:346
65; 536,

previously 22,938)

65,536

path ABD or ABCD.) Similarly, the next two

paths can also be folded together, producing a 65%

chance of forwarding a message to node C. The

simpliﬁed routing table now looks like the fol-

lowing:

This has been only a brief description of the

highly complex OSPF-OMP dynamic routing

protocol. There are a large number of user-

conﬁgurable options and parameters that allow a

network manager to customize the speciﬁc be-

havior of the protocol. For a complete description

of the OSPF-OMP dynamic routing protocol, the

Desti-

nation

D

Next

node

B

C

Hashing boundary

22,938(ј 0:35
65,536)

65,536

interested reader is referred to [7,9].

3. The simulator

When A receives a packet destined for D, it

ﬁrst evaluates the function val ј H рsrc; dstЮ. If

val < 22; 938 the message is sent to node B; oth-

erwise it is forwarded to node C.

We can now see how load adjustments ﬁt quite

naturally within this model. For example, based

on newly arrived loading information, we may

wish to decrease traﬃc along all paths that include

The authors designed and built a packet-based,

discrete event simulator capable of modeling the

behavior of autonomous systems running either

‘‘pure’’ OSPF or one of the two variants described

in Section 2: OSPF-ECMP and OSPF-OMP. A

conﬁguration preprocessor allows users to describe

the exact network they want to simulate, including

the number of nodes, processing speed, the speed

462

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

and location of communication links, the amount

of memory, the arrival rate, size and destination of

packets, and the particular OSPF routing variant

to be used.

3.1. The two-stage queueing model

Each node in the network is modeled as a two-

stage queueing system as shown in Fig. 4. The ﬁrst

stage is the
processing stage, which accepts pack-

ets, determines if they have arrived at their desti-

nation and, if not, moves them on to the second

stage. The second stage is the
transmission stage,

and it models packet transmission from one node

to another. Following transmission, the packet will

be located at stage one of the next node. Thus, the

life of a packet is modeled as a series of processing/

transmission operations at each node on the path

from source to destination.

Newly generated packets, as well as in-transit

packets arriving from other nodes, are either stored

in the stage 1 processor queue or, if the processor is

idle, sent directly to the processor. There are two

packet types in the model––data packets, which are

characterized by their source, destination, and

length, and control packets, characterized by their

type. Currently, the only control message included

in the simulator is the LSA_OMP_LINK_LOAD

ﬂooding message used by OSPF-OMP.

Processor queues have a ﬁnite capacity (set by

the user), and if insuﬃcient memory is available

when a packet arrives, it is discarded and a lost-

packet counter updated. Each node has a single

processor that handles all packets in a constant

amount of time. If a packet’s ultimate destination

is this node then the delivery time is recorded, and

the packet is removed from the system. If it is

Fig. 4. Two-state queueing model of a network node.

destined for another node then a forwarding de-

cision is made using the selected routing protocol

and routing table, and the packet moves on to

stage 2.

In the transmission stage there is a transmitter

and queue for each outgoing line. The transmitter

may start sending the packet immediately or, if it

is busy, it puts the newly routed packet into the

transmission queue of the corresponding line. The

transmission time T of a packet is given by

T ј рL ю S=BЮ

where L is latency in s, B is line speed in bits/s, and

S is the message size in bits. Transmission queues

also have ﬁnite capacity and, when full, packets

are again dropped and the lost-packet counter

updated. If a packet is successfully transmitted it

arrives at stage 1 of the next node on the path to its

ﬁnal destination, and this process/transmit se-

quence is repeated.

3.2. Traﬃc generation parameters

New messages are generated by the simulator at

node i using an exponential interarrival time dis-

tribution with mean value ki, where kiis provided

by the user during network conﬁguration. Each

node has its own local value of
kiin order to

provide the greatest amount of ﬂexibility. In ad-

dition, the simulator contains an event type called

change traﬃc parameters, which may be placed on

the calendar as often as desired and for any time.

When this event occurs, the simulator will input

new values of kifrom the conﬁguration ﬁle and

immediately begin using them.

The two other important traﬃc generation pa-

rameters are message size and message destination.

The size of a message at node i is an exponentially

distributed random variable with mean value
ki.

As with the generation rate, this mean value pa-

rameter is input by the user during network con-

ﬁguration and may be dynamically adjusted

during simulation via the change traﬃc parameters

event.

Finally, message destination is determined us-

ing a two-dimensional array called the destination

probability table (DPT). The value of DPTЅi; j
is

the probability that a message generated at node i

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

463

will be ultimately destined for node j. A random

variable r is generated according to this distribu-

tion and used to determine the destination. The

DPT table is provided by the user, and can also be

dynamically adjusted during simulation.

4. The experiments

We ran a series of simulation experiments using

the model in Section 3 to investigate the behavior

of OSPF, OSPF-ECMP, and OSPF-OMP under

a range of traﬃc intensities and distributions. All

experiments were run using the 13 node, 16-link

network shown in Fig. 5. This network roughly

corresponds to the structure of the NSF Internet

Backbone that existed in 1989 [10].

All communication links have the same speed,

which translates to equal cost for all segments. As

a result, of the possible 13
12 ј 156 source–

destination pairs, 30 have multiple equal-cost

paths. This allowed us to test the ability of both

ECMP and OMP to exploit the existence of these

equal-cost routes.

4.1. Experiment #1: network performance under

varying traﬃc intensities

In this ﬁrst experiment we varied the amount of

traﬃc in the network, and for each traﬃc level

simulated network behavior for a period of 1 h. In

all runs the number of new packets generated at

each node is identical, and each node sends pack-

ets to all other nodes with an equal probability.

We performed 20 experiments, with traﬃc rates at

each of the 13-nodes scaled so that the total mes-

sage generation rate for the entire network varied

from a low of 100 mess/s to a high of 2000 mess/s

in increments of 100. Each experiment was re-

peated ﬁve times, and the data reported in Table 1

is the average for these ﬁve repetitions. For each

run we measured (1) the percent of packets drop-

ped, and (2) the average end-to-end delivery time

for all packets that reached their destination. We

did this for the three variants of OSPF: best path

always (BPA), or ‘‘pure’’ OSPF, ECMP and OMP.

The results are displayed in Table 1, and they

clearly indicate that for our speciﬁc network con-

ﬁguration OMP produced an improvement in

performance at all traﬃc levels.

For light traﬃc loads, 100–500 mess/s, all three

OSPF variants handle the total traﬃc without any

lost packets. However, in every case OMP pro-

duced lower average packet delivery times com-

pared to both BPA and ECMP. The improvements

ranged from 2% to 9%, with an average reduction

of 4.5%, compared to BPA, and from 1.5% to

8.6%, with an average of 4.2%, over ECMP. This

shows that even with relatively light loads, the

beneﬁts of reducing queuing delays by making

better use of equal-cost paths can be signiﬁcant.

At medium levels of network load, 600–800

mess/s, both BPA and ECMP begin to lose packets

due to queue overloads and memory limitations.

However, OMP has no lost packets due to its

ability to move traﬃc from heavily loaded lines to

more lightly used ones and thus make better use

of the total memory capacity of the network. At

medium traﬃc volumes packet loss rates with BPA

and ECMP are low––0.001–0.0055%––but that

Fig. 5. The 13-node network used in the simulation experiments.

464

Table 1

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

Simulation results for Experiment #1

Mess/s
Average delivery time (ms)

BPA
ECMP

Light

OMP

Percent of packets loss

BPA
ECMP

OMP

100

200

300

400

500

Medium

600

700

800

High

900

1000

1100

1200

Saturated

1300

1400

1500

1600

1700

1800

1900

2000

10.32

10.92

11.49

12.24

12.98

13.85

14.94

16.27

17.82

20.92

23.02

26.64

30.64

35

39.5

43.99

48.63

53.24

57.07

60.57

10.28

10.89

11.5

12.16

12.92

13.75

14.76

15.94

17.43

19.57

22.03

25.31

28.83

32.81

36.78

41.04

45.28

49.39

53.65

57.75

9.39

10.33

11.1

11.88

12.72

13.53

14.57

15.78

17.08

18.76

21.19

24.56

29.85

49.94

64.91

75.27

82.8

94.71

100.1

105.1

0

0

0

0

0

0.001

0.0036

0.00548

0.0202

0.128

0.397

1.16

2.52

4.65

7.28

9.89

12.9

15.7

18.5

21.3

0

0

0

0

0

0

0.0021

0.0049

0.0251

0.0949

0.428

1.19

2.54

4.51

6.52

8.95

11.5

14.3

17.2

20.2

0

0

0

0

0

0

0

0

0.001

0.0117

0.0352

0.139

0.384

1.43

3.84

6.15

8.6

12.6

15.9

18

still represents a signiﬁcant number of undeliv-

ered packets. For example, a packet loss rate of

0.00548% by BPA at 800 mess/s means that during

the 1 h of simulated network behavior about 158

packets will be lost due to limitations of the

routing protocol. In addition to not losing packets,

OMP is also delivering packets faster than both

BPA and ECMP, with an average improvement of

2.3–3% over BPA and 1.0–1.6% over ECMP.

It is at high traﬃc levels, 900–1200 mess/s,

where OMP provides the most signiﬁcant gains.

While all three protocol variants are losing some

information, OMP is doing by far the best job.

With BPA and ECMP, the network infrastructure

is unable to handle the load, and a relatively large

percentage of packets are discarded––0.02% up to

almost 1.2%. OMP loses between 0.001% and

0.14%. At a traﬃc rate of 1100 mess/s, this means

that BPA and ECMP will drop about 16,000

packets during the 1 h of simulated behavior––a

huge number. Under the same conditions, OMP

would lose less than 1400. In addition to delivering

more traﬃc, OMP is still delivering packets more

quickly. At this load level there is a reduction in

delivery time of about 7.5% over BPA and 3.2%

over ECMP. (However, these numbers are highly

variable because of the huge packet loss rate which

eﬀects the computation of the overall average de-

livery time.)

If we deﬁne a 0.1% packet loss as the maximum

acceptable, then our simulation shows that both

BPA and ECMP can handle traﬃc volumes up to

about 1000 mess/s, while OMP can handle traﬃc

loads up to 1200 mess/s. Put another way, with

exactly the same set of hardware resources (links,

processors, and memory) OMP can successfully

handle a 20% increase in traﬃc intensity, a sig-

niﬁcant gain.

The one apparent anomaly in OMP perfor-

mance is the average delivery time at traﬃc levels

beyond 1300 mess/s––what we have termed a sat-

urated network. A graph of average delivery time

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

465

Fig. 6. Average delivery times for Experiment 1.

is shown in Fig. 6. Notice how the OMP values

jump at 1300 and stay far above the other two lines

for the remainder of the graph. The reason has to

do with packet loss. At this level, both BPA and

ECMP are losing enormous numbers of packets,

as much as 21%. OMP is also losing packets, al-

though at a signiﬁcantly lower rate. Average de-

livery time measures the time of only those

messages successfully delivered to their destina-

tion. At these saturated levels, so many messages

are lost, that it is signiﬁcantly aﬀecting the com-

putation. Messages that are lost by BPA and

ECMP are being delivered by OMP, although it

takes a long while, which increases average deliv-

ery time. In a sense, OMP is being ‘‘penalized’’ for

doing a better job of delivering traﬃc during pe-

riod of enormous load!

In summary, Experiment 1 demonstrated that:

•
OMP performed better than both BPA and

ECMP at light, medium, and heavy network

loads. The improvements ranged from 2% to

7% over BPA to about 1–4% over ECMP.

•
OMP did a signiﬁcantly better job reducing the

lost-packet rate. In a medium loaded network

it did not lose any packets, while BPA and

ECMP had packet loss rates of 0.001–0.005%.

In a heavily loaded network it did lose packets,

but at a far lower rate than either BPA or

ECMP.

4.2. Experiment #2: response to changes in traﬃc

patterns

Our second experiment examined how OMP

would responds to changes in traﬃc distribution.

Due to their static nature, both BPA and ECMP

are incapable of adjusting their routing tables.

OMP, on the other hand, can dynamically adjust

traﬃc allocations based on changing conditions.

Using the same 13-node network in Fig. 5 we

set the overall network load to 1000 mess/s (a high

traﬃc rate according to Table 1) and ran the sim-

ulation for 60 s. In Experiment 1 all nodes sent an

equal number of packets to all other sites. How-

ever, this type of totally uniform distribution is

unrealistic, so at time 60 we changed the distri-

bution. Now, only 5 of the 13-nodes generate new

traﬃc, and packets are sent only to the other 8

nodes. This arrangement behaves somewhat like a

client/server model––the ﬁve generators are similar

to clients generating requests, while the eight

receiving nodes are behaving like servers who must

support a huge volume of incoming traﬃc.

We ran the simulation for another 900 s, and

the results are shown in Fig. 7. The behaviors of

both BPA and ECMP were quite similar, so we

show only a single line for both.

Before the traﬃc change, OMP had an average

delivery time of about 18–19 ms, while BPA and

ECMP were delivering messages in about 21 ms.

After the change in traﬃc pattern, delivery times

rose for all three methods, reaching about 26 ms

after 5 min. For ECMP and BPA, which are both

static methods, delivery times remained at this

level for the remainder of the simulation, an in-

crease of about 19%.

OMP’s behavior, however, was quite diﬀerent.

As with the static methods, delivery times increase

immediately after the traﬃc change since the

Fig. 7. Responsiveness to changes in traﬃc patterns.

466

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

protocol is using allocation parameters that are no

longer appropriate for the new traﬃc distribution.

The delivery times reach a maximum value of

about 25 ms after 5 min of simulation. However,

by this point in time nodes are beginning to note

that some links are overloaded, and they start

ﬂooding
LSA_OMP_LINK_LOAD
messages

which describe these new loads.

Upon receipt of these control messages nodes

begin adjusting their hashing boundaries to redis-

tribute the traﬃc, exactly as described in Section 2.

It takes a while, since the early traﬃc adjustments

are small, but eventually the network does adapt.

After 8 min of simulation, and only 3 min after it

reached its maximum value, OMP has reduced

average delivery time to 21 ms. Delivery times re-

main stable at this level for the remainder of the

simulation, without either instabilities or oscilla-

tions.

This is a clear demonstration of the ability of

OMP to respond quickly and eﬀectively to changes

in the pattern of network traﬃc.

4.3. Experiment #3: behavior under unsteady state

In addition to changes in traﬃc distribution,

another common characteristic of network traﬃc is

massive, short-duration ﬂuctuations in volume––

i.e., an unsteady state. In order to study how the

three variations of OSPF react to these capacity

ﬂuctuations we conducted an experiment where we

suddenly doubled the traﬃc volume for a short

period of time, namely 3 s, and then watched what

happened with each of our three protocols. This

behavior might simulate, for example, the trans-

mission of a massive data ﬁle across the network.

For this experiment we measured the total number

of messages in the network, rather than delivery

time. With high intensity bursts of traﬃc, you are

usually more interested in how much traﬃc the

network can carry than in the time it takes to de-

liver that traﬃc.

Using the network from Fig. 5, we started with

the same simulation parameters as Experiment

1––a traﬃc intensity of 1000 mess/s and an equal

distribution of packets to all other nodes. We ran

Fig. 8. Performance under traﬃc shock.

the simulation until the network was stable and

unchanging. Then we suddenly increased the

traﬃc load from 1000 to 2000 mess/s for a period

of 3 s. The results are shown in Fig. 8, which

displays the total number of messages within the

network against time relative to the instant when

traﬃc intensity changed.

At time 0 traﬃc was doubled to 2000 mess/s,

well beyond the capacity of the network as shown

in Table 1. With both BPA and ECMP, the aver-

age number of messages in the network jumped

from 100 to 400 in about one second and then

stabilized.

The processor and transmission queues along

the routes ﬁlled up quickly, and at that point the

system was unable to handle any more incoming

packets, and they were lost. It is possible that there

was queue space available at other nodes, but

neither BPA nor ECMP could adapt and make use

of that free space. In a sense, Fig. 8 is saying that

the ‘‘network capacity’’ of both BPA and ECMP is

approximately 400 messages, and beyond that, all

message traﬃc will be lost.

OMP, on the other hand, utilized the available

memory resources much better. The number of

messages in the system grew to about 700 messages

in 2–3 s, an increase of 75% over what could be

handled by the other two methods. That is, OMP

was better able to accommodate these higher

traﬃc levels due to a superior distribution of load

across equal-cost paths, which made better use of

the total amount of memory space available

throughout the network.

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

467

At time 3, traﬃc intensity was reset to 1000

mess/s. BPA and ECMP returned to their original

levels in about half a second. It took OMP longer,

about 1–1.5 s, since it has more messages in the

system that needed to be delivered.

4.4. Comparison with previous simulation work

The IETF has run simulations on the OMP

routing protocol, and a summary of their results

can be found in [11]. Their experiments diﬀer from

the ones described in this paper in that they were

investigating the fundamental traﬃc allocation,

stability, and convergence properties of the OMP

algorithm described in Section 2. They examined

how OSPF-ECMP and OSPF-OMP allocated load

to equal-cost paths under diﬀerent operating con-

ditions, and compared that to the loading prop-

erties of basic OSPF. For example, in their initial

experiment they used a 12-node, 19-link network

(quite similar to Fig. 5) and a ﬁxed traﬃc volume

to study the link loading behavior of both ECMP

and OMP. With ECMP they found that two of the

network links were allocated 109% of capacity, an

obviously unstable system. Running OSPF-OMP,

they were able to reduce the load on the most

heavily used link to 89%. Further experiments are

described in [11].

Based on these simulation studies, the conclu-

sions reached by the IETF regarding the relative

performance of OMP vs. ECMP were:

•
ECMP in some cases provides improvement

over OSPF without equal-cost paths and in

some cases makes loading worse. Having ECMP

available as an option is clearly preferable to not

having it available.

•
OMP in all cases provided a loading improve-

ment over OSPF without equal-cost paths

and in all cases provided a loading improve-

ment over ECMP. Simple topologies can be

constructed where OMP performs no better

than either of these two techniques, but OMP

would never perform worse. In all real cases,

OMP would provide better loading and in some

cases very signiﬁcantly better loading than

OSPF without equal cost or with ECMP

[11].

5. Conclusions

Our experiments with the network simulator

have allowed us to get some preliminary estimates

of the improvements in message delivery times and

packet loss rates that are possible using the OSPF-

OMP routing protocol in place of existing im-

plementations of OSPF. Of course, the results

presented in this paper apply only to the speciﬁc

conditions that existed within our experiments,

and these results cannot be generalized to state-

ments about the overall performance that can be

expected from OMP under all types of operating

conditions.

However, based on the outcomes of the three

experiments described in the previous section we

observed that OMP performed better than either

‘‘pure’’ OSPF or OSPF-ECMP under a wide range

of diﬀerent traﬃc conditions. Speciﬁcally:

•
OMP performed better than both BPA and

ECMP at light, medium, and heavy network

loads. The improvements in message delivery

times ranged from 2% to 7% over BPA to about

1–4% over ECMP.

•
OMP did a signiﬁcantly better job in reducing

the lost-packet rate. In a medium loaded net-

work it did not lose any packets, while BPA

and ECMP had packet loss rates of 0.001–

0.005%. In a heavily loaded network it did lose

packets, but at a far lower rate than either

BPA or ECMP.

•
OMP responded well to dramatic changes in

traﬃc distribution. The response occurred in a

short period of time and did not appear to suﬀer

from oscillations.

•
OMP responded well to dramatic ﬂuctuations in

traﬃc volume. It responded by making better use

of the total amount memory available in the net-

work to lose signiﬁcantly fewer packets.

In the future we plan to use our discrete event

simulator to study other aspects of OSPF-OMP

468

G.M. Schneider, T. Nemeth / Computer Networks 39 (2002) 457–468

and to examine how it behaves with diﬀerent net-

works, a diﬀerent set of lines, and diﬀerent traﬃc

characteristics.

References

[1] J. McQuillian, I. Richer, E. Rosen, The new routing

algorithm for the ARPANET, IEEE Trans. Commun. 28

(5) (1980) 711–719.

[2] J. Moy, OSPF, Addison-Wesley, Reading, MA, 1998.

[3] J. Moy, OSPF, Version 2, IETF Technical Report

RFC 2328, 1998. Available from <ftp://ftp.isi.edu/in-notes/

rfc2328.txt>.

[4] S.H. Low, P. Varaiya, Dynamic behavior of a class of

adaptive routing protocols, Proceedings of the Conference

on Computer Communications, March 1993.

[5] Internet Engineering Task Force, Report RFC 1247,

March 1998.

[6] L. Petersen, B. Davies, Computer Networks, second ed.,

Morgan Kaufman, Los Altos, CA, 2000, Section 4.2.3,

Link state routing.

[7] C. Villamizar, Internet Engineering Task Force INTER-

NET-DRAFT, draft-ietf-ospf-omp-03, August 1999. Avail-

able from <http://www.ﬁctitious.org/ospf-omp/ospf-omp.

html>.

[8] R. Coltun, The OSPF opaque LSA option, Technical

Report RFC 2370, Internet Engineering Task Force,

1998.

[9] Optimized Multipath Home Page. Available from <http://

www.brookﬁeld.ans.net/omp/#adjust>.

[10] A. Tanenbaum, Computer Networks, third ed., Prentice-

Hall, Englewood Cliﬀs, NJ, 1996.

[11] http://www.brookﬁeld.ans.net/omp/simulations.html.

G. Michael Schneider is Professor and

Chair of the Department of Mathe-

matics
and
Computer
Science
at

Macalester College, St. Paul, Minne-

sota. He received his Ph.D. in Com-

puter Science from the University of

Wisconsin in 1974 and taught at the

University of Minnesota for 8 years

before moving to Macalester in 1982.

His areas of research include computer

networks, network protocols, and dis-

tributed systems. He is also the author

of
seven
textbooks
in
computer

science.

Tamas Nemeth was born in Kaposvar,

Hungary. He received a Bachelor’s

degree in Computer Science, Mathe-

matics and Physics from Macalester

College in Saint Paul, Minnesota. He

currently works at ORC Macro as a

Senior Programmer Analyst. Among

other honors, he received the ﬁrst place

prize from the Society of Industrial

and Applied Mathematics and the

Institute for Operations Research and

Management Sciences in the Interna-

tional Mathematical Modeling Con-

test with his submission entitled ‘‘A

Tricubic Interpolation Algorithm for MRI Image Cross-Sec-

tions’’. His interests include ornithology and snow sculpting at

the annual International Snow Sculpting Championships in

Breckenridge, Colorado.

